revista accb, artículos académicos, artículos. biología, ciencias, ACCB, biologicas

Versions

Supplementary Files

PDF. Pag, 89-102 (Español (España))

Keywords

Alimentación animal
Diversidad Biológica
Evolución Biológica
Filogenia
Glándulas salivares
Phyllostomidae. (Fuente: ICYT, Mammals Species of the World)
Salivary Glands. (Source: Mammals Species of the World, MeSH) Biodiversity
Biological evolution
Animal nutrition
Phylogeny, Phyllostomidae

How to Cite

Salivary proteins related to the diversity of diets in tropical bats . (2021). REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS, 1(32), 89–102. https://doi.org/10.47499/revistaaccb.v1i32.212

Abstract

The Phyllostomidae family presents a great diversity of diets that require physiological adaptations to metabolize the different foods that they consume. In frugivores of the family Pteropodidae and insectivores of the families Vespertilionidae and Molossidae, distinctive salivary proteins of each diet have been reported. For this reason, it was proposed to determine salivary molecules associated with the different diets of the phylostomids. The organisms were fasting when taking the sample, to which a protease inhibitor buffer was added and it was stored at -20°C until use. The proteins were identified by means of SDS-PAGE and it was evaluated whether their presence in individuals was associated with the evolutionary history of the species. In addition, it was determined whether the proteins found would be related to the individual’s diet. 15 species were caught with nectarivorous, insectivorous and frugivorous diets. A protein of 60kDa was found in herbivorous phyllostomids and a 50kDa protein in vespertilionids and phyllostomids with high insect consumption. In addition, a 30kDa protein was recorded in all phylostomids and in 2 of the 3 species of vespertilionids. The analyzes indicated that the presence of the proteins would not be related to the phylogenetic closeness and that, for the 30 and 50kDa proteins, it would not be explained by the diet as it is the case with the 60kDa protein. The phylostomids would have retained the 30kDa protein from their ancestral insectivorous diet and evolutionarily acquired the 60kDa protein to process plants and achieve the broad ecological diversification they present.

https://doi.org/10.47499/revistaaccb.v1i32.212

References

Fleming TH. Foraging strategies of plant-visiting bats. En: Kunz TH, editor. Ecology of Bats. Boston: Springer; 1982. p. 287–325.
Peixoto FP, Villalobos F, Cianciaruso MV. Phylogenetic conservatism of climatic niche in bats. Glob Ecol Biogeogr. 2017; 26(9): 1055–65.
Villalobos F, Arita H. The diversity field of New World leaf-nosed bats (Phyllostomidae). Glob Ecol. Biogeogr. 2009; 19(2): 200–11.
Rojas D, Vale Á, Ferrero V, Navarro L. When did plants become important to leaf-nosed bats? Diversification of feeding habits in the family Phyllostomidae. Mol Ecol. 2011; 20(10): 2217–28.
Baker R, Solari S, Cirranello A, Simmons N. Higher level classification of phyllostomid bats with a summary of DNA synapomorphies. Acta Chiropt. 2016; 18(1): 1–38.
Jobson S. Leaf-nosed bat species richness (Chiroptera: Phyllostomidae) across habitat types in a neotropical wet forest of the Osa Peninsula, Costa Rica. Metamorphosis. 2018; 1-10.
Eisenberg JF, Wilson DE. Relative brain size and feeding strategies in the Chiroptera. Evolution. 1978; 32(4): 740-51.
Schondube J, Herrera-ML, Martínez del Rio C. Diet and the evolution of digestion and renal function in Phyllostomid bats. Zoology; 2001; 104(1): 59–73.
Pirlot P, Stephan H. Encephalization in Chiroptera. Can J Zool. 1970; 48(3): 433–44.
Novaes RL, Souza R, Ribeiro E, Siqueira A, Greco A, Moratelli R. First evidence of frugivory in Myotis (Chiroptera, Vespertilionidae, Myotinae). Biodivers. Data J. 2015; (3), e6841. https://doi.org/10.3897/BDJ.3.e6841
Dumont E. Salivary pH and buffering capacity in frugivorous and insectivorous bats. J Mammal. 1997; 78(4): 1210–19.
Phillips CD, Baker RJ. Secretory gene recruitments in vampire bat salivary adaptation and potential convergences with sanguivorous leeches. Front Ecol Evol. 2015; 3:122. https://doi.org/10.3389/fevo.2015.00122
Phillips CJ, Weiss A, Tandler B. Plasticity and patterns of evolution in mammalian salivary glands: comparative immunohistochemistry of lysozyme in bats. Eur J Morphol. 1998; 36:19-26.
Vandewege MW, Sotero-Caio CG, Phillips CD. Positive selection and gene expression analyses from salivary glands reveal discrete adaptations within the ecologically diverse bat family Phyllostomidae. Genome Biol Evol. 2020; 12(8): 1419 –28.
Carpenter G. The secretion, components, and properties of saliva. Annu. Rev. Food Sci. Technol. 2013; 4(1): 267–76.
Dumont E, Etzel K, Hempel D. Bat salivary proteins segregate according to diet. Mammalia. 1999; 63(2): 159-66.
CVC, CIAT, DAGMA. Estudio para la microzonificación climática para el municipio de Santiago de Cali. Santiago de Cali: Corporación Autónoma del Valle del Cauca (CVC); 2015.
CVC. Centro de Educación Ambiental La Teresita CVC [Internet]. CVC. 2018 [citado 28 de septiembre de 2020]. Recuperado de: https://www.cvc.gov.co/node/450
MinVivienda, CAMACOL, IFC, EAER. Mapa de clasificación del clima en Colombia según la temperatura y la humedad relativa y listado de municipios [Internet]. Santafé de Bogotá: ISMD Ingeniería Sostenible; 2013. Recuperado de: http://ismd.com.co/wp-content/uploads/2017/03/Anexo-No-2-Mapa-de-Clasificaci%C3%B3n-del-Clima-en-Colombia.pdf
Rendón J. Coreguaje [Internet]. Ministerio del Interior. 2013 [citado 28 de septiembre de 2020]. Recuperado de: https://www.mininterior.gov.co/sites/default/files/upload/SIIC/PueblosIndigenas/pueblo_coreguaje.pdf
Taylor RJ, Oneill MG. Summer activity patterns of insectivorous bats and their prey in tasmania. Wildl Res. 1988; 15(5): 533-39.
Hayes JP. Temporal Variation in Activity of Bats and the Design of Echolocation-Monitoring Studies. J Mammal. 1997; 78(2): 514-24.
Díaz MM, Solari S, Aguirre LF, Aguiar LMS, Bárquez RM. Clave de identificación de los murciélagos de Sudamérica. Publicación Nº 2, PCMA (Programa de Conservación de los Murciélagos de Argentina. 2016; 160 pp.
Dominique PC. Feeding strategy and activity budget of the frugivorous bat Carollia perspicillata (Chiroptera: Phyllostomidae) in French Guiana. J Trop Ecol. 1991; 7: 243-56.
Fleming TH, Nuñez RA, Sternberg LD. Seasonal changes in the diets of migrant and non-migrant nectarivorous bats as revealed by carbon stable isotope analysis. Oecologia. 1993; 94(1): 72–75.
Kwiecinski GG. Phyllostomus discolor. Mamm. Species. 2006; 801: 1–11.
Hoofer SR, Solari S, Larsen PA, Bradley RD, Baker RJ. Phylogenetics of the fruit-eating bats (Phyllostomidae: Artibeina) inferred from mitocondrial DNA sequences. Ocass Pap Mus Tex Tech Univ. 2008; 277:1-16.
Aroca AK, González LA, Hurtado MA, Murillo-García OE. Preferencia en la dieta de murciélagos frugívoros (Phyllostomidae) en un fragmento de bosque seco tropical. Rev. Cienc.. 2016; 20: 139-46.
Kraker-Castañeda C, Cajas-Castillo JO, Lou S. Opportunistic feeding by the little yellow-shouldered bat Sturnira lilium (Phyllostomidae, Stenodermatinae) in northern Guatemala: a comparative approach. Mammalia. 2016; 80(3): 349-52.
Castaño JH, Carranza JA, Pérez-Torres J. Diet and trophic structure in assemblages of montane frugivorous phyllostomid bats. Acta Oecol. 2018; 91: 81–90.
Cartwright T, Hawkey C. Activation of the blood fibrinolytic mechanism in birds by saliva of the vampire bat (Diaemus youngi). J Physiol. 1969; 201: 45-46.
Cavalheiro EA. The pilocarpine model of epilepsy. Ital J Neurol Sci. 1995; 16(1-2): 33–37.
Cartwright T. The plasminogen activator of vampire bat saliva. Blood. 1974; 43(3): 317-26.
Thomadaki K, Helmerhorst EJ, Tian N, Sun X, Siqueira WL, Walt DR, et al. Whole-saliva proteolysis and its impact on salivary diagnostics. J Dent Res. 2011; 90(11): 1325–30.
Wu F, Wang M. Extraction of proteins for sodium dodecyl sulfate-polyacrylamide gel electrophoresis from protease-rich plant tissues. Anal Biochem. 1984; 139(1): 100–103.
Lawler J. The structural and functional properties of thrombospondin. Blood. 1986; 67: 1197-1209.
Harmon LJ, Losos JB, Davies JT, Gillespie RG, Gittleman JL, Jennings BW, et al. Early bursts of body size and shape evolution are rare in comparative data. Evolution. 2010; 64: 2385–96.
Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999; 401: 877–84.
Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. GEIGER: Investigating evolutionary radiations. Bioinformatics. 2008; 24: 129–31.
Motani R, Schmitz L. Phylogenetic versus functional signals in the evolution of form-function relationships in terrestrial vision. Evolution. 2011; 65(8): 2245–57.
Agnarsson I, Zambrana-Torrelio CM, Flores-Saldana NP, May-Collado LJ. A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia). PLoS Curr. 2011. doi: 10.1371/currents.RRN1212
Ho LST, Ane C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst Biol. 2014; 63(3):397-408.
Gerhold P, Ribeiro EMS, Santos BA, Sarapuu J, Tabarelli M, Wirth R, et al. Phylogenetic signal in leaf-cutting ant diet in the fragmented Atlantic rain forest. J Trop Ecol. 2019; 35(3): 144–47.
Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach: Second edition. New York: Springer-Verlag; 2002. 488 p.
Shimada T. Salivary proteins as a defense against dietary tannins. J Chem Ecol. 2006; 32(6): 1149–63.
Manconi B, Castagnola M, Cabras T, Olianas A, Vitali A, Desiderio C, et al. The intriguing heterogeneity of human salivary proline-rich proteins. J Proteomics. 2016; 134: 47–56.
Zucker WV. Tannins: does structure determine function? An ecological perspective. Am Nat. 1983; 121: 335–65.
Sazima I, Sazima M. Solitary and group foraging: two flower-visiting patterns of the lesser spear-nosed bat Phyllostomus discolor. Biotropica. 1977; 9(3): 213-15.
Willig MR, Camilo GR, Noble SJ. Dietary Overlap in Frugivorous and Insectivorous Bats from Edaphic Cerrado Habitats of Brazil. J Mammal. 1993; 74(1): 117–28.
Alvarez T, Sánchez-Casas N. Diferenciación alimentaria entre los sexos de Glossophaga soricina (Chiroptera: Phyllostomidae) en México. Rev Biol Trop. 1999; 47(4): 1129-36.
Arias E, Cadenillas R, Pacheco V. Diet of nectarivorous bats from the National Park Cerros de Amotape, Tumbes. Rev Peru Biol. 2009; 16(2): 187-90.
Pedrozo AR, Gomes LAC, Uieda W. Feeding behavior and activity period of three neotropical bat species (Chiroptera: Phyllostomidae) on Musa paradisiaca inflorescences (Zingiberales: Musaceae). Iheringia, Sér Zool. 2018; 108: e2018022. doi: 10.1590/1678-4766e2018022
Gnocchi AP, Huber S, Srbek-Araujo AC. Diet in a bat assemblage in Atlantic Forest in southeastern Brazil. Trop Ecol. 2019; 60(3): 389-404.
Mello MAR, Kalko EKV, Silva WR. Diet and abundance of the bat Sturnira lilium (Chiroptera) in a Brazilian Montane Atlantic Forest. J Mammal. 2008; 89(2): 485-92.
Montoya-Bustamante S, Zapata-Mesa N. Accidental consumption of Atta Cephalotes (Hymenoptera: Formicidae) by Artibeus lituratus (Chiroptera: Phyllostomidae). MaNo. 2017; 4(1): 25-26.
Fernley RT, Wright RD, Coghlan JP. A novel carbonic anhydrase from de ovine parotid gland. FEBS Press. 1979; 105(2): 299-302.
Da Costa G, Lamy E, Capela e Silva F, Andersen J, Sales Baptista E, Coelho AV. Salivary amylase induction by tannin-enriched diets as a possible countermeasure against tannins. J Chem Ecol. 2008; 34(3): 376-87.
Nater UM, Rohleder N, Gaab J, Berger S, Jud A, Kirschbaum C, et al. Human salivary alpha-amylase reactivity in a psychosocial stress paradigm. Int J Psychophysiol. 2005; 55(3): 333–42.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2020 REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...